TOC prediction and grading evaluation based on variable coefficient △logR method and its application for unconventional exploration targets in Songliao Basin

Author:

Yu Zhanqing,Ma Shizhong,Liu Chao

Abstract

The prediction of total organic carbon (TOC) content and grading evaluation of shale formation are very much significant and essential for reservoir description of rolling exploration and development in the new shale exploration area (Shuangcheng) in Songliao basin, China. In order to improve exploration efficiency and obtain continuous TOC content curve of wells, the variable coefficient △logR technique was developed for TOC estimating which is based on the two of acoustic time difference and deep lateral resistivity logging curve and the variable scale coefficient (K) between them as well as another scale coefficient (A) between TOC and △logR. A prediction model of TOC was established for the well which TOC is measured by evaluation of side wall cores, then apply it to other wells to verify the reliability of the model. The application result of eleven exploration Wells in Shuangcheng area show that the TOC of shale is linearly correlated with △logR, and the maximum prediction accuracy k value varies with wells, so it is necessary to determine the undetermined coefficient k according to a single well, but the A value having no big change from one well to another in similar sedimentary facies and thermal evolution degree of shale. The average relative error of TOC between prediction model and core measurement is 10.6% which verifies the accuracy of this method. On this basis of TOC prediction, we establish shale grading evaluation criteria for the study area. In the establishment process, not only the relationship between TOC and S1, but also vitrinite reflectance (Ro) are considered. The shale in Shuangcheng area can be divided into three types (Class I: TOC > 3.5% and Ro > 0.9%; Class II: TOC 2%–3.5% and Ro > 0.9; Class III: TOC < 2% or Ro < 0.9%), and achieved shale classification on the well profile with TOC and Ro which are easy to predict and reliable. According to the relationship between the thickness of shale of disparate classes and the total thickness of shale in different zones, the thickness of shale of disparate classes in each well is predicted.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: A case study from the sembar formation, Southern Indus Basin, Pakistan;Aziz;J. Nat. Gas Eng.,2020

2. The effective source rocks in the north cambay basin, India;Banerjee;Mar. Petroleum Geol.,2000

3. Assessment of mesozoic and upper paleozoic source rocks in the south yellow sea basin based on the continuous borehole csdp-2;Cai;Mar. Petroleum Geol.,2019

4. Wireline logging and source rocks estimation of organic carbon by the Carbolog method;Carpentier;Log. Anal.,1991

5. TOC evaluation using variable-coefficient ΔlogR model;Chen;J. China Univ. Petroleum,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3