Seabed classification of multibeam echosounder data into bedrock/non-bedrock using deep learning

Author:

Garone Rosa Virginia,Birkenes Lønmo Tor Inge,Schimel Alexandre Carmelo Gregory,Diesing Markus,Thorsnes Terje,Løvstakken Lasse

Abstract

The accurate mapping of seafloor substrate types plays a major role in understanding the distribution of benthic marine communities and planning a sustainable exploitation of marine resources. Traditionally, this activity has relied on the efforts of marine geology experts, who accomplish it manually by examining information from acoustic data along with the available ground-truth samples. However, this approach is challenging and time-consuming. Hence, it is important to explore automatic methods to replace this manual process. In this study, we investigated the potential of deep learning (U-Net) for classifying the seabed as either “bedrock” or “non-bedrock” using bathymetry and/or backscatter data, acquired with multibeam echosounders (MBES). Slope and hillshade data, derived from the bathymetry, were also included in the experiment. Several U-Net models, taking as input either one of these datasets or a combination of them, were trained using an expert delineated map as reference. The analysis revealed that U-Net has the ability to map bedrock and non-bedrock areas reliably. On our test set, the models using either bathymetry or slope data showed the highest performance metrics and the best visual match with the reference map. We also observed that they often identified topographically rough features as bedrock, which were not interpreted as such by the human expert. While such discrepancy would typically be considered an error of the model, the scale of the expert annotations as well as the different methods used by the experts to manually generate maps must be considered when evaluating the predictions quality. While encouraging results were obtained here, further research is necessary to explore the potential of deep learning in mapping other seabed types and evaluating the models’ generalization capabilities on similar datasets but different geographical locations.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3