Study on the influence of confining pressure and unloading damage on the bursting liability characteristics of coal

Author:

Du Taotao,Pan Junfeng,Xia Yongxue,Sun Ruda

Abstract

The research on the bursting liability of coal under confining pressure and unloading damage is critical in creating prevention mechanisms for coal mass rock bursts in deep underground mines. Cyclic loading and unloading tests of variable stress with a lower limit were performed under multistage confining pressure and different amplitude unloading to explore their influence on the impact tendency of the coal bodies. Meanwhile, the characteristic parameter analysis of acoustic emissions was used to evaluate the failure. The results revealed that the accumulated number and energy of acoustic emission events gradually decreased with increasing the confining pressure. The coal specimen became denser, and the failure mode gradually transitioned from brittle to ductile. With the increase in unloading amplitude, the cumulative number of acoustic emission events in the coal specimens decreases, the damage degree to the coal body increases, the peak load decreases, and the failure mode transitions from ductile to brittle. The increase in confining pressure results in an increase in the input energy and the elastic strain energy, while the increase in the unloading range of the coal body leads to a decrease in the input energy and elastic strain energy. In addition, after the confining pressures of 3 MPa, 6 MPa, and 9 MPa, the residual elastic energy index of the coal specimens increases by 21.76%, 42.92%, and 71.69%, respectively, compared with the room pressure conditions. The residual elastic energy index decreases by 21.11% and 55.38% for the unloading amplitude of 3 MPa and 6 MPa, respectively, compared with the unloaded coal specimen, indicating that the impact tendency of the coal body is enhanced by the confining pressure conditions.

Funder

National Natural Science Foundation of China

Applied Basic Research Project of Shanxi Province, China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3