Hydrogeochemical characteristics and genesis of Hongshuilantang Hot Spring and its water temperature anomalies during the Rushan earthquake swarm in Eastern China

Author:

Du Guilin,Su Shujuan,Chang Xiangchun,Ren Hongwei,Huo Zhuqing,Zhang Xiaohui

Abstract

Water temperatures of hot springs close to tectonic fault zones often show some variations before earthquakes, and analyses of earthquake precursors in hot springs have significant referential meaning for earthquake monitoring and forecasting. This study measured the concentration of major ions in water from the Hongshuilantang Hot Spring in 2017 and 2020. The ion composition was classified by hydrochemistry into the HCO3·SO4-Na chemical type. The composition of hydrogen and oxygen isotopes in the Hongshuilantang Hot Spring were located near the global meteoric water line (GMWL), indicating that the recharge source of the hot spring was meteoric water. The δD and δ18O values were not plotted on the Glogal Meteroric Water Line (GMWL), and there were some deviations, which suggested that hot spring water underwent water–rock interactions. Deep circulation water played an important role during the evolution process of thermal water. Water temperature showed a decreasing trend from October 2013 to June 2015 during the Rushan earthquake swarm in eastern China. Because of the occurrence of the earthquake swarm, we inferred that regional stress in this area began to be released, allowing continuous rebalancing. Free surface water appeared in some aquifers, and the seepage of low-temperature underground water into the upper aquifer led to a drop in water temperature in the hot spring. The Hongshuilantang Hot Spring and the epicenter of the Rushan earthquake swarm were located on the Muping–Jimo seismological fault zone, with the same seismotectonic system and some genesis relationships.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3