Fracture propagation induced by hydraulic fracturing using microseismic monitoring technology: Field test in CBM wells in Zhengzhuang region, Southern Qinshui Basin, China

Author:

Zhao Jinbin,Liu Peng,Li Junjun,Chen Zhaoying,Li Yang,Li Feng

Abstract

Hydraulic fracturing is an important technical measure for coalbed methane (CBM) development, and the propagation of fractures in the target coal seam induced by hydraulic fracturing is related to the stimulation performance in CBM recovery. Therefore, effective monitoring of fracture development during reservoir fracturing is critical for CBM engineering. In this paper, the microseismic technology was used to monitor the spatial and temporal characteristics of the fracture extension in the CBM well during hydraulic fracturing in Zhengzhuang Region, Southern Qinshui Basin, China. Based on the microseismic fracture scanning data and imaging processing, the three-dimensional shape of fractures in vertical wells after fracturing can be quantified, and for the vertical well ZHSY-1, the main fracture direction is identified as NE106°, and the fracture length is 426 m, and the fracture area of coal seam is 1.6 × 105 m2. It is found that fracturing does not develop continuously in time and space with fracturing fluid injection, and the fracture regions are scattered throughout the space, and the formation and development of fracture regions are intermittent. After fracturing with a large amount of fracturing fluid injection in Well ZHSY-1, the fracture area has been significantly increased, and the well gas production has been significantly improved, which is confirmed by the field CBM well data. This study provides a field application case for studying the effect of hydraulic fracturing fracture propagation using microseismic technology, which can be used as a reference for fracturing engineering in CBM development.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Discontinuous fatigue of salt rock with low-stress intervals;Fan;Int. J. Rock Mech. Min. Sci.,2019

2. A coupled methane/air flow model for coal gas drainage: Model development and finite-difference solution;Fan;Process Saf. Environ. Prot.,2020

3. Time interval effect in triaxial discontinuous cyclic compression tests and simulations for the residual stress in rock salt;Fan;Rock Mech. Rock Eng.,2020

4. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs;Fan;Appl. Energy,2020

5. Practice of Re-fracturing with network energization for horizontal well in tight oil reservoir;He;Spec. Oil Gas. Reserv.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3