Pore Structure and Wettability of Lacustrine Shale With Carbonate Interlayers in Dongying Depression, Bohai Bay Basin, East China

Author:

Yin N.,Hu Q. H.,Liu H. M.,Du Y. S.,Zhu X. C.,Meng M. M.

Abstract

Shale samples with carbonate interlayers have attracted more and more attention in shale oil exploration of lacustrine shale in China, and the characterization of pore structure and wettability of these shales are significant to the study of shale-oil enrichment and effective exploitation. In this work, by examining six shale samples with carbonate interlayers of Shahejie Formation in East China, the pore structure and wettability characteristics of shale are characterized by means of thin section petrography; X-ray diffraction mineralogy; total organic carbon (TOC) analyses; scanning electron microscopy (SEM) imaging; air-liquid contact angle for wettability; as well as N2 physisorption, mercury intrusion porosimetry, and nuclear magnetic resonance (NMR) for pore structure. The results show that the main mineral contents are carbonate (with an average of 51.4%) and clay minerals (mainly mixed-layer illite-smectite). The average TOC content is 2.90%, and there is a strong correlation between TOC and dolomite content. In addition, the obvious layered structure is observed by thin section and SEM methods. The pores below 200 nm with ink-bottle shapes are obviously smaller than those of marine shale, and the pore throats are mainly below 50 nm; however, there are also some micrometer-sized cracks. The droplet contact angle measurement shows that the shale is mainly lipophilic, while moderately hydrophilic, at millimeter observational scales. The NMR T2 spectra of water- and oil-saturated samples have an obvious feature of three peak characteristics, as the pore size-associated wettability of these samples can be divided into three stages: water-wet (0.01–1 ms), oil-wet (1–40 ms), and mixed-wet (>40 ms) in terms of relaxation time of the NMR T2 spectrum. The proportion of the second main peak of T2 spectra (P2) for dodecane-saturated samples is directly proportional to the TOC content, and the relationship between P2 and mineral composition is consistent with water-saturated samples.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3