Idealized Study of a Static Electrical Field on Charged Saltating Snow Particles

Author:

Yu Hongxiang,Li Guang,Huang Ning,Lehning Michael

Abstract

Strong electric fields, with values of tens kV/m near the surface, are observed during drifting and blowing snow events. Charge separation can significantly affect particle motion. Although several investigations attempted to shed light on the mechanisms of charge separation and the resulting electric field structure, few studies paid attention to the effect of electrification on the particle trajectory, which may influence the transport mechanism. In this work, we studied trajectories of individual, charged particles in an idealized static electrical field by solving the equations of motion in a neutral atmospheric boundary layer. The results show that negatively charged particles have a lower saltation height while positively charged particles jump higher as long as friction velocities are small. This effect reverses for higher friction velocities as rebound velocities start to dominate over vertical acceleration. We find regimes, in which charge separation leads to suspension of particles close to the ground. The threshold condition for this saltation-suspension transition is related to the rebound velocity and charge-to-mass ratio of the charged particle. Our study is a first step towards a better understanding on the influence of charge separation on drifting snow and should lead to include this effect in state of the art saltation models.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3