Deep ensemble model-based moving object detection and classification using SAR images

Author:

Paramasivam Ramya,Kumar Prashanth,Lai Wen-Cheng,Bidare Divakarachari Parameshachari

Abstract

In recent decades, image processing and computer vision models have played a vital role in moving object detection on the synthetic aperture radar (SAR) images. Capturing of moving objects in the SAR images is a difficult task. In this study, a new automated model for detecting moving objects is proposed using SAR images. The proposed model has four main steps, namely, preprocessing, segmentation, feature extraction, and classification. Initially, the input SAR image is pre-processed using a histogram equalization technique. Then, the weighted Otsu-based segmentation algorithm is applied for segmenting the object regions from the pre-processed images. When using the weighted Otsu, the segmented grayscale images are not only clear but also retain the detailed features of grayscale images. Next, feature extraction is carried out by gray-level co-occurrence matrix (GLCM), median binary patterns (MBPs), and additive harmonic mean estimated local Gabor binary pattern (AHME-LGBP). The final step is classification using deep ensemble models, where the objects are classified by employing the ensemble deep learning technique, combining the models like the bidirectional long short-term memory (Bi-LSTM), recurrent neural network (RNN), and improved deep belief network (IDBN), which is trained with the features extracted previously. The combined models increase the accuracy of the results significantly. Furthermore, ensemble modeling reduces the variance and modeling method bias, which decreases the chances of overfitting. Compared to a single contributing model, ensemble models perform better and make better predictions. Additionally, an ensemble lessens the spread or dispersion of the model performance and prediction accuracy. Finally, the performance of the proposed model is related to the conventional models with respect to different measures. In the mean-case scenario, the proposed ensemble model has a minimum error value of 0.032, which is better related to other models. In both median- and best-case scenario studies, the ensemble model has a lower error value of 0.029 and 0.015.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3