Physical simulation of remaining oil distribution in the 3rd-order architecture unit in beach sand reservoir

Author:

Liu Taixun,Fawad Nadir,Li Chao,Li Haitao,He Ruiwu,Xu Jian,Ahmad Qazi Adnan

Abstract

Introduction:Oilfield development’s primary objective has changed in recent years as a result of a deeper focus on oilfield exploration and possible reservoir oil extraction. These days, the distribution and characteristics of residual oil are hot topics.Methodology:This research study provides a physical simulation of the remaining oil distribution in the third-order architectural unit in the beach reservoir. Based on the reservoir geometry and compositional sequence, the third-order architecture unit in a beach sand reservoir can be divided into three types: layered, plate-like, and trough-like architecture units.Results and Discussion:A water-flooding simulation experiment is performed to find the distribution pattern of remaining oil (shortened as RO and used hereafter) and the controlling effect of the mudstone interlayer. The simulation results revealed that in the layered architecture unit with reverse-graded bedding, RO is mainly distributed between interlayers and accumulates at the bottom in fine-grain sands. The horizontal distribution of the mudstone interlayer has a profound effect on blocking the longitudinal migration of fluid. Second, in the plate-like architecture unit with uniform grain size, RO is mainly found in the middle portion of the model, separated by clay interlayers, with irregular presence of RO in the upper and lower part of the model. The oblique distribution of the clay interlayer has a significant effect on blocking the lateral migration of the fluid. Thirdly, in the trough-like architectural unit with normal-graded bedding, the RO is mainly distributed on top of the model in fine-grain sands and on the ridge-like parts formed by the interlayer’s intersection.Conclusion:A trough-like clay interlayer can promote fluid movement. RO distribution patterns from the current experiment can be used to explore the remaining oil in beach sand reservoirs of similar oilfields.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3