Hierarchical Milankovitch and sub-Milankovitch cycles in the environmental magnetism of the lower Shahezi Formation, Lower Cretaceous, Songliao Basin, northeastern China

Author:

Zhang Shujing,Wu Huaichun,Zhang Shihong,Yang Tianshui,Li Haiyan,Fang Qiang,Shi Meinan

Abstract

SK-2 borehole in Songliao Basin provides unprecedented geological materials for investigating the Early Cretaceous continental paleoenvironment and paleoclimate in northeastern China. The lacustrine successions of the lower Shahezi (K1sh) Formation at the depth from 4,542 to 5,695 m was systematically studied using environmental magnetism and cyclostratigraphy in this study. Magnetic analysis reveals an inverse correlation between magnetic susceptibility (MS) and lithological ranks in fine clastic sediments, with the highest values in mudstones and the lowest in sandstones. The main magnetism carriers in the lower K1sh are pseudo-single-domain (PSD) and/or multi-domain (MD) magnetite with minor presence of hematite. MS was used to further explore the genesis of the environmental and climatic variations through cyclostratigraphic analysis. Sedimentary cycles of 113 m, 34 m, 13 m and 6 m can be identified in the power spectrum, which were interpreted as long and short eccentricity, obliquity, and precession cycles, demonstrating the impact of astronomical cyclicity on sedimentary rhythmicity. Floating astronomical time scale (FATS) of 4,090 kyr and 4,148 kyr were established by tuning the inferred long and short eccentricity cycles to the artificial 405-kyr and 105-kyr orbital eccentricity curves respectively. The estimated sediment accumulation rate around 28 cm/kyr confirms the rapid deposition process within the faulted lacustrine basin. Based on this study, the lake level oscillations in Songliao Basin are assumed to be shaped by long and short eccentricity, precession and semi-precession cycles during Early Cretaceous. This study also indicates that the sand-mudstone alternations deposition in K1sh is most likely driven by the seasonal discrepancies of summer insolation during semi-precession periods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3