Mapping of the Subglacial Topography of Folgefonna Ice Cap in Western Norway—Consequences for Ice Retreat Patterns and Hydrological Changes

Author:

Ekblom Johansson Fanny,Bakke Jostein,Støren Eivind Nagel,Gillespie Mette Kusk,Laumann Tron

Abstract

Folgefonna consists of three ice caps which are rapidly retreating in response to warmer temperatures. The melting of Folgefonna has implications for meltwater drainage and hydropower production, as well as the potential for geohazards and impacts to tourism, the communities and infrastructures surrounding the glacier. To support future adaptation strategies, we need to know the subglacial topography of the ice caps to identify water divides and possible areas for geohazards. Therefore, we mapped the subglacial topography at Sørfonna, the largest of the Folgefonna ice caps, using an ice-penetrating radar (2.5 MHz antennas; 1,000 × 500 m grid). The results show a highly irregular subglacial landscape, with deep valleys and high mountain peaks. The maximum ice thickness is 570 m and the mean ice thickness is 190 m. We examined the retreat pattern of Sørfonna using the subglacial topography map in combination with a simple ice flow model and simulated the ice retreat 150 years into the future. We used two climate scenarios (one with a 1.5°C warming and a 3% increase in precipitation, and a second with a 3.5°C warming together with 15% increase in precipitation) and focused on how the glacial retreat will cause hydrological changes in the catchments surrounding the glacier. The main drainage pattern shifts during glacial retreat, with a larger proportion of southward drainage compared to the present day. The ice flow modelling also reveals that the southern part of Sørfonna is more durable during climate change whereas the thinner part of the ice cap, in the north, melts faster. We suggest that increased winter precipitation in a future warmer climate makes the southern part of Sørfonna more resilient than many other glaciers in southern Norway. The subglacial topography map and the retreat pattern also reveal areas that may accumulate water and could potentially generate a future glacial outburst flood. Sediments from distal glacier-fed lakes around Sørfonna have been used to constrain the thresholds identified on the subglacial topography map. Combining sedimentological evidence from distal glacier-fed lakes with the new subglacial topography map confirms that the retreat of specific outlet glaciers, such as Bondhusbreen, Buerbreen, and Møsevassbreen, will have a large impact on meltwater routing, as they are situated behind bedrock thresholds in the upper part of the glacier’s catchment area.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3