Intermediate- and Deep-Water Oxygenation History in the Subarctic North Pacific During the Last Deglacial Period

Author:

Ovsepyan Ekaterina,Ivanova Elena,Tetard Martin,Max Lars,Tiedemann Ralf

Abstract

Deglacial dissolved oxygen concentrations were semiquantitatively estimated for intermediate and deep waters in the western Bering Sea using the benthic foraminiferal-based transfer function developed by Tetard et al. (2017), Tetard et al. (2021a). Benthic foraminiferal assemblages were analyzed from two sediment cores, SO201-2-85KL (963 m below sea level (mbsl), the intermediate-water core) and SO201-2-77KL (2,163 mbsl, the deep-water core), collected from the Shirshov Ridge in the western Bering Sea. Intermediate waters were characterized by an oxygen content of ∼2.0 ml L−1 or more during the Last Glacial Maximum (LGM)–Heinrich 1 (H1), around 0.15 ml L−1 during the middle Bølling/Allerød (B/A)–Early Holocene (EH), and a slight increase in [O2] (∼0.20 ml L−1) at the beginning of the Younger Dryas (YD) mbsl. Deep-water oxygen concentrations ranged from 0.9 to 2.5 ml L−1 during the LGM–H1, hovered around 0.08 ml L−1 at the onset of B/A, and were within the 0.30–0.85 ml L−1 range from the middle B/A to the first half of YD and the 1.0–1.7 ml L−1 range from the middle to late Holocene. The [O2] variations remind the δ18O NGRIP record thereby providing evidence for a link between the Bering Sea oxygenation at intermediate depths and the deglacial North Atlantic climate. Changes in the deep-water oxygen concentrations mostly resemble the deglacial dynamics of the Southern Ocean upwelling intensity which is supposed to be closely coupled with the Antarctic climate variability. This coherence suggests that deglacial deep-water [O2] variations were primarily controlled by changes in the circulation of southern-sourced waters. Nevertheless, the signal from the south at the deeper site might be amplified by the Northern Hemisphere climate warming via an increase in sea-surface bioproductivity during the B/A and EH. A semi-enclosed position of the Bering Sea and sea-level oscillations might significantly contribute to the magnitude of oxygenation changes in the study area during the last deglaciation. Interregional correlation of different proxy data from a wide range of water depths indicates that deglacial oxygenation changes were more pronounced in the Bering and Okhotsk marginal seas than along the open-ocean continental margin and abyssal settings of the North Pacific.

Funder

Russian Foundation for Basic Research

Deutsche Forschungsgemeinschaft

Agence Nationale de La Recherche

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3