Experimental and numerical studies on CO2 injectivity in low permeability oil reservoirs

Author:

Meng Fankun,Cao Lin,Zhou Yuhui,Liu Botao,Wen Chengyue,Liu Jia

Abstract

Introduction: Contrary to the traditional recognition that CO2 has large injectivity (the ratio of CO2 injection volume to pressure drop) in low permeability oil reservoirs to keep the formation pressure at a high level, the CO2 injection rate usually cannot attain the set value. It is essential to study the factors that influence CO2 injectivity and propose the optimal strategies to improve the CO2 injectivity.Methods: Therefore, in this study, several core samples collected from low permeability oil reservoirs are used to experimentally investigate the influences of CO2 injection rate, formation permeability, pressure and water saturation on CO2 injectivity, and the corresponding pressure drop, oil and gas production are examined. To determine the primary factor that influences the CO2 injectivity, orthogonal experimental design (ODE) and numerical simulations are utilized. In addition, to improve CO2 injectivity, the techniques of mini-fracturing and radial perforation are presented, and the threshold values for these two parameters are determined.Result and discussion: The results demonstrate that according to the magnitude of the extent that influences CO2 injectivity, the rank for the above factors is CO2 injection rate, reservoir pressure, formation water saturation and permeability. The oil recovery is mainly influenced by CO2 injection rate and formation permeability, and the influences of reservoir pressure and water saturation on oil recovery are smaller. The threshold values for radial perforation and fracture half-length are 25 m and 50m, respectively, which can provide some guidance for the strategies that should be taken to improve the CO2 injectivity and recover more oil from low permeability oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3