A study of cloud microphysical processes and a mesoscale environment in a heavy rainfall case over Yan’an

Author:

Xu Jin,Ping Fan,Li Jian Yang,Du Han

Abstract

A cloud-resolved numerical simulation was carried out for an extreme rainfall case in Yan’an, a city in arid and semi-arid regions in northwest China, on 3–4 September 2021, by using Mesoscale Weather Research and Forecasting Model. The Auto Weather Station and Doppler radar were applied to verify simulated results. The characteristics of mesoscale cloud environment and cloud microphysical processes were analyzed. Then, the quantitative rainwater mass budget and latent heat budget of microphysical conversions about water condensates calculated in Yan’an. The possible mechanism by which cloud microphysics affected the rainstorm was investigated and discussed. It was found that: (1) There was positive feedback between mesoscale cloud environment and cloud microphysical processes, especially diabatic heating processes due to ice phase particles conversions. (2) The process of snow conversions processes was the most important process of this heavy rainfall in Yan’an. It not only promoted the production of rain, but also contributed to the enhancement of updraft through latent heat release and produced positive feedback to other microphysical processes in cloud. (3) Heavy rainfall in arid regions of China is mostly cold-type precipitation, mainly manifested by snow-dominated cloud microphysical processes producing deep convection.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. The evolution of the mesoscale environment of severe local storms: Preliminary modeling results;Anthes;Mon. Weather Rev.,1982

2. Study on the influence of Qinling Daba Mountain topography on heavy precipitation in southern Shaanxi [J];Bi;Highl. Meteorol.,2006

3. Influence of microphysical processes on the initiation of the mesoscale convective system of a rainstorm over Beijing;Chen;Atmos. Res.,2021

4. Analysis of Doppler radar storm identification techniques in Yan'an area [J];Ding,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3