Three-Dimensional Fault Model and Activity in the Arc-Shaped Tectonic Belt in the Northeastern Margin of the Tibetan Plateau

Author:

Li Liguo,Li Zhigang,Sun Chuang,Wang Weitao,Dai Xiangming,Zhang Yipeng,Liang Hao,Xu Binbin,Wu Xiancan,Lv Liangwei

Abstract

The arc-shaped tectonic belt, located in the northeastern margin of the Tibetan Plateau, is one of the leading edges of the plateau’s outward growth and uplift expansion, with a large number of active faults and frequent seismic activity. Researchers have carried out numerous studies on active faults in this region, and a wealth of reliable basic data has been accumulated. However, integrating multidisciplinary data to establish a 3D geometrical structure model that is concerned about seismogenic tectonics and can be tested, has become the key to restricting the regional seismic hazard evaluation. Based on a series of published active tectonic research, we analyze in detail the surface and deep coupling relationships of the major active faults in this region and establish three sets of 3D fault structure models, which are built respectively by active fault mapping and dip angles (the V1 model), 7 magnetotelluric profiles and 7 auxiliary profiles (the V2 model), and multi-source data (the V3 model) and continuously close to the real geological facts. From the model perspective, it is suggested that the controversial Haiyuan fault is a crustal-scale left-slip fault and the shape of the Liupanshan fault reflects the absorption of the left-slip component of the Haiyuan fault. Comparing the same fault plane of these three models, we find that the V3 model is more consistent with geological facts, showing that by assisting the multi-source data 3D geological modeling technique we can establish a 3D geological model closest to the real regional structure. Finally, combining the V3 model, the fault segmentation, and the empirical formulas of the moment magnitude-rupture parameters, we segment the faults and calculate the potential moment magnitudes of the major active faults in the study region. The faults with relatively higher seismic hazards are the Liupanshan fault, the southeastern segment of the Xiangshan-Tianjingshan fault, the westernmost segment of the Haiyuan fault, and the West Qinling fault, of which the estimated potential moment magnitudes are generally more than 7.0. Our study provides a referenced 3D geological model for exploring the deep structures of the region, regional geological research, and earthquake disaster prevention.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3