Classifying the surrounding rock of tunnel face using machine learning

Author:

Song Shubao,Xu Guangchun,Bao Liu,Xie Yalong,Lu Wenlong,Liu Hongfeng,Wang Wanqi

Abstract

Accurately classifying the surrounding rock of tunnel face is essential. In this paper, we propose a machine learning-based automatic classification and dynamic prediction method of the surrounding rocks of tunnel face using the data monitored by a computerized rock drilling trolley based on the intelligent mechanized construction process for drilling and blasting tunnels. This method provides auxiliary support for the intelligent decision of dynamic support at the construction site. First, this method solves the imbalance in the classification of the surrounding rock samples by constructing the Synthetic Minority Oversampling Technique (SMOTE) algorithm using 500 samples of drilling parameters covering different levels and lithologies of a tunnel. Second, it filters the importance of the characteristic samples based on the random forest method. Third, it uses the XGBoost algorithm to model the processed data and compare it with AdaBoost and BP neural network models. The results show that the XGBoost model achieves a higher accuracy of 87.5% when the sample size is small. Finally, we validate the application scenarios of the above algorithm/model regarding the key aspects of the tunnel construction process, such as surrounding rock identification, design interaction, construction supervision, and quality evaluation, which facilitates the upgrading of intelligent tunnel construction.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning;Han,2005

2. Adasyn: Adaptive synthetic sampling approach for imbalanced learning;He,2008

3. Strengthened mechanized construction management and construction efficiency analysis of large cross-sectional tunnel;Jiang;Tunn. Constr.,2018

4. Comparing nearest-neighbour search strategies in the SMOTE algorithm;Kam;Can. J. Electr. Comput. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3