Lithofacies logging identification for strongly heterogeneous deep-buried reservoirs based on improved Bayesian inversion: The Lower Jurassic sandstone, Central Junggar Basin, China

Author:

Zheng Zongyuan,Zhang Likuan,Cheng Ming,Lei Yuhong,Zhang Zengbao,Zeng Zhiping,Ren Xincheng,Yu Lan,Yang Wenxiu,Li Chao,Liu Naigui

Abstract

The strong heterogeneity characteristics of deep-buried clastic low-permeability reservoirs may lead to great risks in hydrocarbon exploration and development, which makes the accurate identification of reservoir lithofacies crucial for improving the obtained exploration results. Due to the very limited core data acquired from deep drilling, lithofacies logging identification has become the most important method for comprehensively obtaining the rock information of deep-buried reservoirs and is a fundamental task for carrying out reservoir characterization and geological modeling. In this study, a machine learning method is introduced to lithofacies logging identification, to explore an accurate lithofacies identification method for deep fluvial-delta sandstone reservoirs with frequent lithofacies changes. Here Sangonghe Formation in the Central Junggar Basin of China is taken as an example. The K-means-based synthetic minority oversampling technique (K-means SMOTE) is employed to solve the problem regarding the imbalanced lithofacies data categories used to calibrate logging data, and a probabilistic calibration method is introduced to correct the likelihood function. To address the situation in which traditional machine learning methods ignore the geological deposition process, we introduce a depositional prior for controlling the vertical spreading process based on a Markov chain and propose an improved Bayesian inversion process for training on the log data to identify lithofacies. The results of a series of experiments show that, compared with the traditional machine learning method, the new method improves the recognition accuracy by 20%, and the predicted petrographic vertical distribution results are consistent with geological constraints. In addition, SMOTE and probabilistic calibration can effectively handle data imbalance problems so that different categories can be adequately learned. Also the introduction of geological prior has a positive impact on the overall distribution, which significantly improves the accuracy and recall rate of the method. According to this comprehensive analysis, the proposed method greatly enhanced the identification of the lithofacies distributions in the Sangonghe Formation. Therefore, this method can provide a tool for logging lithofacies interpretation of deep and strongly heterogeneous clastic reservoirs in fluvial-delta and other depositional environments.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3