Application of enhanced methods of gravity data analysis for mapping the subsurface structure of the bahira basin in Morocco

Author:

Lghoul Meriem,Abd-Elhamid Hany F.,Zeleňáková Martina,Abdelrahman Kamal,Fnais Mohammed S.,Sbihi Karim

Abstract

Gravity-based imaging of the subsurface has increased worldwide recently. Improvements in the processing and analysis of gravity data have allowed us to locate the basement surface, map geologic basins, and define structural patterns. In this study, gravity data were analyzed to study the Bahira basin’s underlying geology. The Bahira basin is very important economically. The Ganntour plateau is distinctive due to the importance of the phosphate mining resources. Using gravity data, we mapped the subsurface and determined the underlying structural patterns that affect the study area. In this study, we used several techniques to edge detection including Total horizontal derivative (THDR), first vertical derivative (FVD), tilt derivative (TDR), and its horizontal derivative (THDR_TDR) methods. Accordingly, the geological history of the Bahira basin suggests that the main lineaments/faults trends are NE-SW, NW-SE, ENE-WSW, and WNW-ESE. The 3D Euler deconvolution showed the depth and location of lineaments/faults, and matched edge detection results. The eastern Bahira basin’s sedimentary layer is 2–8 km deeper according to the Euler technique. Two-dimensional forward modeling along three profiles in the Bahira basin revealed a horst-graben basement structure. The outcomes of this study improved the subsurface topographical variations of the Bahira Basin. The information collected so far can help future studies in the area.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Applications of gravity anomalies in geophysics;Frontiers in Earth Science;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3