Changes in air and liquid permeability properties of loess due to the effect of lead contamination

Author:

Wen Shaojie,Cheng Wen-Chieh,Hu Wenle,Rahman Md Mizanur

Abstract

Heavy metals in landfill leachate are easily adsorbed by soil particles, causing serious threats to human health and surrounding environments. Mining and metallurgy activities are intensive in Northwest China, thereby enlarging threats. The aim of the present study is to enhance our knowledge about the linkage between the microstructural evolution of the loess soil induced by lead contamination and the macro air and liquid permeability properties. A series of air and liquid permeability tests on the uncontaminated and Pb-contaminated loess specimens were conducted. Their air and liquid permeability properties were evaluated on the basis of Darcy’s law and the soil–water retention curves, respectively. The microstructural evolution, when subjected to low and high Pb2+ concentrations, was assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and zeta potential tests. The intrusion of Pb2+ decreases the absolute zeta potential ζ, which in turn leads to a more distinct agglomerated structure and higher intrinsic permeability. Moreover, the dedolomitization and associated cerussite (PbCO3) precipitation are deemed as the main cause of micropore clogging, whereas the corrosion of the cement between soil particles by H+ shows a good correspondence to an increase in the number of mesopores. With the concentration of Pb2+ increasing from 0 to 2,000 mg/kg, the proportion of micropores decreases from 37.9% to 15.1%, and the proportion of mesopores increases from 17.3% to 53.3%. In addition, the air entry value decreased from 19.5 to 12.8 kPa, indicating that the water retention behavior decreased. The findings highlight the impacts of lead contamination on the microstructure and macro permeability properties and give some design guideposts to heavy metal-contaminated site remediation.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3