Decadal variation in the frequency of tropical cyclones originating in the South China Sea and migrating from the western North Pacific

Author:

Huang Peilan,Xu Jianjun,Liang Mei

Abstract

A decadal variation in the frequency of tropical cyclones (TCs) that reached their lifetime maximum intensity (LMI) in the South China Sea (SCS; 5°N-25°N, 107°E-121°E) from 1978 to 2020 was identified. TCs that generated and reached LMI in the SCS were named “local TCs,” while those that generated in the western North Pacific (WNP) and reached LMI in the SCS were named “migratory TCs.” A seesaw phenomenon in the frequencies of these two types of TCs was found before and after 1997. From 1978 to 1996, TC frequency was generally lower in local TCs but higher in migratory TCs. The opposite was true from 1997 to 2020. The main factors responsible for this “seesaw” phenomenon include changes in the genesis positions of TCs and the interdecadal variation of large-scale environmental flow patterns. From 1997 to 2020, during which the large-scale steering flow was favorable for local TCs, the monsoon trough over the WNP withdrew westward along with the warm pool and the subtropical high strengthened westward. Meanwhile, the sea surface temperature (SST) gradient between the equator and mid-latitudes decreased and the north wind weakened near 120°E. Easterly winds were strengthened in the equatorial region, which led to an abnormal anticyclone and the divergence of water vapor in the WNP. In contrast, the SST of the SCS, an internal sea, increased significantly. Under local atmosphere-ocean interaction, abnormal cyclonic circulation appeared in the SCS, which led to intensified convergence and intensified wet convection. Changes in the environmental fields in the WNP and SCS are the main reasons for the seesaw phenomenon observed in these two types of TCs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3