Mechanical mechanism of in situ stress ratio limit and its evolution simulation

Author:

Chen Yifei,Wang Yongjian,Huang Fuqiong,Ma Long,Yang Changyi,Shi Haoyu

Abstract

In situ stress is a natural phenomenon. According to the Mohr–Coulomb criterion, it is found that when the ratio of principal stress (the ratio of maximum principal stress to minimum principal stress) of crustal rock mass in a certain environment exceeds the critical value, the rock mass will change from an elastic state to a plastic state. This critical value is the extreme limit of the principal stress ratio, which is related to the cohesion and internal friction angle of rock mass, and the limit of the principal stress ratio in the shallow part is discrete. Although the principal stress of deep rock mass is large, the ratio limit is mainly related to the internal friction angle. The calculation results show that the principal stress ratio of deep rock mass is stable in a small range. By comparing and analyzing 574 groups of measured data, it is found that all the measured principal stress ratios are within the limit range of the theoretical ratio, which also shows the characteristics of shallow dispersion and deep stability, indicating that the theoretical analysis and the measured results are consistent with each other. In order to show the change process of in situ stress, a numerical model fitting plate motion is established, and the limits of the principal stress ratio in five periods in the past 500,000 years are compared. The results show that the maximum principal stress at measuring points at different depths shows a change law of “first increasing and then stabilizing.” In areas close to or exceeding the principal stress ratio, high shear strain zones appear in the rock mass, and the stress is released in the form of plastic failure or shear dislocation, making the main stress ratio finally stable between 6.0 and 8.0. Therefore, it is easy to judge the stability of regional strata by using the ratio of principal stress; the area with a small ratio of principal stress belongs to the area with good stability, and when the ratio of principal stress is close to the limit of the ratio, it is an unstable area. The measured data show that the area with a high ratio of principal stress is often the recent seismic activity area; therefore, the ratio of in situ stress may become a possible index for earthquake prediction.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Self-organized criticality: An explanation of the 1/f noise;Bak;Phys. Rev. Lett.,1987

2. Trends in relationships between measured in-situ stresses and depth;Brown;Int. J. Rock Mech. Min. Sci. Geomechanics Abstr.,1978

3. Relation between ground stress behavior and properties of surrounding rock;Cai;China Min. Mag.,1997

4. Analysis of insitu stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake;Chen;Chin. J.Geophys,2012

5. Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a 1’architecture;Coulomb;Memoires de Math. de Physique, Present. a I’ Acad. R. des Sci. par divers Savans, Ius dans ses Assemblees,1773

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3