Comparison of process-based and lumped parameter models for projecting future changes in fluvial sediment supply to the coast

Author:

Sirisena T. A. J. G.,Bamunawala Janaka,Maskey Shreedhar,Ranasinghe Roshanka

Abstract

Fluvial sediment supply (FSS) is one of the primary sources of sediment received by coasts. Any significant change in sediment supply to the coast will disturb its equilibrium state. Therefore, a robust assessment of future changes in FSS is required to understand the coastal system’s status under plausible climatic variations and human activities. Here, we investigate two modelling approaches to estimate the FSS at two spatially heterogeneous river basins: the Irrawaddy River Basin (IRB), Myanmar and the Kalu River Basin (KRB), Sri Lanka. We compare the FSS obtained from a process-based model (i.e., Soil Water Assessment Tool: SWAT) and an empirical model (i.e., the BQART model) for mid- (2046–2065) and end-century (2081–2100) periods under climate change and human activities (viz, planned reservoirs considered here). Our results show that SWAT simulations project a higher sediment load than BQART in the IRB and vice versa in KRB (for both future periods considered). SWAT projects higher percentage changes for both future periods (relative to baseline) compared to BQART projections in both basins with climate change alone (i.e., no reservoirs) and vice versa when planned reservoirs are considered. The difference between the two model projections (from SWAT and BQART) is higher in KRB, and it may imply that empirical BQART model projections are more in line with semi-distributed SWAT projections at the larger Irrawaddy River Basin than in the smaller Kalu River Basin.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3