The complex construction of a glaciovolcanic ridge with insights from the 2021 Fagradalsfjall Eruption (Iceland)

Author:

Pollock Meagen,Edwards Benjamin R.,Judge Shelley,Wallace Chloe,Hiatt Alex,Perpalaj Aleksander,Was Ellie,Hauksdóttir Steinunn

Abstract

Glaciovolcanic landforms provide global-scale records of paleoenvironmental conditions and yield insights into subglacial eruption processes. Models for the formation of glaciovolcanic ridges, or tindars, are relatively simple, proposing a monogenetic eruption and a fairly uniform stratigraphy with or without a single transition from effusive pillow lavas to explosive fragmental deposits. Others have suggested that tindars are more complicated. To build a more robust model for tindar formation, we conducted a field and geochemical study of Undirhlíðar ridge on the Reykjanes Peninsula in southwestern Iceland. We show that the ridge was built through a complex sequence of eruptive and intrusive events under dynamically changing ice conditions. Quarry walls expose a continuous cross-section of the ridge, revealing multiple pillow and fragmental units. Pillow lava orientations record the emplacement of discrete pillow-dominated lobes and the migration of volcanic activity between eruptive vents. Volatile contents in glassy pillow rinds show repeated pulses of pillow lava emplacement under glaciostatic conditions, with periods of fragmentation caused by depressurization. Variations in major elements, incompatible trace element ratios, and Pb-isotopes demonstrate that the eruption was fed from separate crustal melt reservoirs containing melts from a compositionally heterogeneous mantle source. A shift in mantle source signature of pillow lavas suggests that the primary ridge-building phase was triggered by the injection of magma into the crust. Within the growing edifice, magma was transported through dykes and irregularly shaped intrusions, which are up to 20% by area of exposed stratigraphy sequences. The model for tindar construction should consider the significant role of intrusions in the growth of the ridge, a detail that would be difficult to identify in natural erosional exposures. The 2021–22 eruptions from the adjacent Fagradalsfjall vents allow us to draw parallels between fissure-fed eruptions in subaerial and ice-confined environments and test hypotheses about the composition of the mantle underlying the Reykjanes Peninsula. Both Fagradalsfjall and Undirhlíðar ridge eruptions may have occurred over similar spatial and temporal scales, been triggered by mixing events, erupted lavas with varying mantle source signatures, and focused volcanic activity along migrating vents. Differences in composition between the two locations are not related to systematic lateral variations in the underlying mantle. Rather, the Undirhlíðar ridge and Fagradalsfjall eruptions capture complex interactions among the crustal magma plumbing system, mantle source heterogeneity, and melting conditions for a moment in time.

Funder

Division of Earth Sciences

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference112 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3