Numerical Investigation on Stratum and Surface Deformation in Underground Phosphorite Mining Under Different Mining Methods

Author:

Li Xiaoshuang,Wang Yunmin,Hu Yunjin,Zhou Changbing,Zhang He

Abstract

With the ending of deep-concave open-pit phosphorite extractions and gradual exhausting of shallow mineral resources, stoping of phosphorite seams has entered or will enter into underground mining. Particularly for excavating slightly inclined thin and medium-thick phosphorite orebodies, roof and surface control under different mining methods is crucial for safe and efficient exploitations. In this study, the study area is located in Kunyang Phosphorite Mine characterized by slightly inclined thin and medium-thick deposits. Based on the occurrence conditions, orebody thickness, dip angle, and more factors, the mining methods of underground phosphorite are selected, including room and pillar mining, cement backfill mining, and caving mining. Numerical analysis on roof deformation and surface subsidence under the three methods is performed. The results show that the amount of roof and surface subsidence decreases successively by the caving method, room and pillar method, and cement backfill method. The maximum roof and surface subsidence by the caving method is 45.7 and 13.3 cm, respectively. Regarding shallow orebodies, the open-pit slope is obviously disturbed by the caving method and room and pillar mining method. Hence, slope displacement monitoring should be emphasized. Compared with the other two methods, the backfill mining method can use mined wastes as backfill materials and has less influence on the roof and surface during stoping and is better at controlling slope stability.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3