A submarine morphotectonic analysis combining GIS-based methods and virtual reality: Case study of the low-rate active thrust faulting off Boumerdès (Algeria)

Author:

Déverchère Jacques,Barbé Antoine,Kernec Maxime,Jaud Marion,Ruault Riwalenn

Abstract

The Algerian margin is located at the slow-rate convergent boundary between African and Eurasian plates and experienced several strong earthquakes in the last centuries. Among them, the 2003 Mw 6.8 Boumerdès event has triggered large turbidity currents in the slightly concave canyons of the slope and numerous cable breaks in the abyssal plain. In this study, we explore where, how and when the tectonic inversion of the margin off Boumerdès has left witnesses in the seafloor morphology and whether the observed deformation correlates with the 2003 coseismic rupture zone and with the Plio-Quaternary sedimentation. We have performed a careful analysis of the seafloor morphology and subsurface seismic reflectors at the landscape scale and along/between canyons by combining classical GIS-based methods and Virtual Reality techniques. From the mid-slope to the deep basin off the ∼60 km long Boumerdès-Dellys coast, we evidence large knickpoints corresponding to the development of four main cumulative fault scarps and two perched basins which are deeply incised by steep canyons and gullies. We interpret these structures to result from frontal propagation of two main south-dipping thrusts by upper crustal décollement ramping, evidencing an incipient sub-thrust imbrication in a stage of initiation of an accretionary wedge. The flat-ramp thrust geometry and their along-strike segmentation explain the development and shape of the perched basins in the backlimb of fault-related folds. The onset of growth strata is dated at 1.5 ± .5 Ma on the slope and .9 ± .3 Ma in the deep basin. The length, position, strike and segmentation of the older, southern thrust ramp are consistent with the coseismic characteristics of the Mw 6.8 2003 earthquake. The cumulative vertical scarp throw exceeds 1 km, supporting Quaternary shortening rates of 1.6 ± .7 mm/yr, in agreement with geodetic strain rates across the western Mediterranean basin. Virtual Reality offers powerful and promising means to correlate seismic imagery and seafloor morphology and is of great help to improve the robustness of tectonostratigraphic interpretation.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3