Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes

Author:

Desyatkin Roman,Filippov Nikolai,Desyatkin Alexey,Konyushkov Dmitry,Goryachkin Sergey

Abstract

Global warming, which is especially intensive (up to 0.08°C yr−1) in permafrost area of Central Yakutia, has dramatic consequences for scarce arable land resources in this region. In Yedoma landscapes, intense permafrost thawing on arable fields unprotected by forest vegetation transforms the surface microtopography with the formation of residual thermokarst mounds (byllars) of 6–10 m in diameter surrounded by a polygonal network of hollows of 0.3–1.5 m in depth above melting ice wedges. This process also takes place on former croplands abandoned in the recent decades because of socioeconomic reasons. It is accompanied by a significant transformation of the previously highly likely homogeneous soil cover composed of Cambic Turbic Cryosols (Sodic) into differentiated complexes of permafrost-affected Stagnic Cambisols or Calcic Solonetzes (Turbic) on the mounds and Calcic Stagnic Solonetzes (Turbic) in the microlows. Surface soil horizons on the mounds have a strongly to very strongly alkaline reaction (pH 8.5–9.5) and low (<2%) organic carbon content; a wavy line of effervescence is found at a depth of 15–30 cm. Soils in the microlows have a close to neutral reaction in the upper horizons (pH 6.2–7.5); higher organic carbon content (2–3%); more pronounced textural differentiation of the profile with the formation of typical natric Btn and, in some cases, overlying eluvial E horizons; deeper (50–60 cm) line of effervescence; and clear stagnic features in the lower part of the profile. In the case of shallow embedding by ice wedge, the lowermost part of the soil in the microlow is characterized by the low bulk density (1.04 g cm−3) because of the appearance of hollows after thawing of the ice-rich transient layer and melting of the top of ice wedges. This may be indicative of the further soil subsidence in the future and the appearance of initial thermokarst lakes (dyuedya) within the Yedoma terrain with its transformation into the alas type of landscape. Rapid thermokarst-driven development of microtopography followed by differentiation of the soil cover with increasing soil alkalinity on the microhighs and soil textural differentiation and overmoistening of deep layers in the microlows prevents the return of abandoned arable land to agriculture in Yedoma landscapes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference50 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3