Seismo-Acoustic Characterization of Mount Cleveland Volcano Explosions

Author:

Iezzi Alexandra M.,Fee David,Haney Matthew M.,Lyons John J.

Abstract

Volcanic explosions can produce large, ash-rich plumes that pose great hazard to aviation, yet may often have few precursory geophysical signals. Mount Cleveland is one of the most active volcanoes in the Aleutian Arc, Alaska (United States) with at least 65 explosions between December 2011 and June 2020. We characterize the seismo-acoustic signals from explosions at Mount Cleveland over a period of 4 years starting in 2014 when the permanent local instrumentation was installed. While the seismic explosion signals are similar, the acoustic signals vary between explosions. Some explosion acoustic waveforms exhibit a single main compressional phase while other waveforms have multiple compressions. The time lag between seismic and acoustic arrivals varies considerably (up to 2.20 s) at a single station ∼3 km from the vent, suggesting a change in propagation path for the signals between explosions. We apply a variety of methods to explore the potential contributions to this variable time lag from atmospheric conditions, nonlinear propagation, and source depth within the conduit. This variable time lag has been observed elsewhere, but explanations are often unresolved. Our results indicate that while changes in atmospheric conditions can explain some of the variation in acoustic arrival time relative to the seismic signal arrivals, substantial residual time lag variations often still exist. Additionally, nonlinear propagation modeling results do not yield a change in the onset time of the acoustic arrival with source amplitudes comparable to (and larger) than Cleveland explosions. We find that a spectrum of seismic cross-correlation values between events and particle motion dip angles suggests that a varying explosion source depth within the conduit likely plays a dominant role in the observed variations in time lag. Explosion source depths appear to range from very shallow depths down to ∼1.5–2 km. Understanding the seismo-acoustic time lag and the subsequent indication of a variable explosion source depth may help inform explosion source modeling for Mount Cleveland, which remains poorly understood. We show that even with a single co-located seismic and acoustic sensor that does not always remain on scale, it is possible to provide meaningful interpretations of the explosion source depth which may help monitoring agencies understand the volcanic system.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3