Weak degassing from remote Alaska volcanoes characterized with a new airborne imaging DOAS instrument and a suite of in situ sensors

Author:

Kern Christoph,Kelly Peter J.

Abstract

Gas emissions from volcanoes occur when volatile species exsolve from magmatic and hydrothermal systems and make their way to the surface. Measurements of emitted gases therefore provide insights into volcanic processes. On 16 July 2021, we made airborne measurements of weak gas plumes emitted from four remote Alaska volcanoes: Iliamna Volcano, Mount Douglas, Mount Martin, and Mount Mageik. Integrated into a small fixed-wing aircraft, a new Imaging Differential Optical Absorption Spectroscopy (DOAS) instrument was used to map the spatial extent of SO2 plumes as they drifted downwind. Contrary to conventional Mobile DOAS instruments, which provide only a single viewing direction, the Imaging DOAS simultaneously measures SO2 column density along 48 individual viewing directions oriented in a swath above or below the aircraft. Each of the individual measurements have a comparable precision and sensitivity to those obtained by conventional instruments. Together, they provide high resolution 2D imagery of the volcanic plumes and allow calculation of limited emission rate time series information. Although zenith-facing DOAS measurements achieve greater accuracy and are performed here, the application of the Imaging DOAS in a nadir-facing setup is also discussed and compared to satellite observations made in similar geometries. Also onboard the aircraft, a suite of electrochemical and optical sensors measured the relative abundances of the six major volcanic volatile species H2O, CO2, SO2, H2S, HCl, and HF as the aircraft passed through the plumes. Mean SO2 emission rates of 90 ± 10, 20 ± 3, and 13 ± 3 t/d were measured at Iliamna Volcano, Mount Douglas, and Mount Martin, respectively. SO2 emissions were below the DOAS detection limit at Mount Mageik but CO2 and H2S could be measured with the in situ sensors. The information gleaned from these measurements was used to assess and compare activity at these volcanoes, all of which were found to be in a state of background degassing but whose emissions pointed to different source conditions ranging from mixed magmatic-hydrothermal to purely hydrothermal in character. Additional measurements at Mount Spurr, Redoubt Volcano, and Augustine Volcano failed to detect the very weak gas concentrations downwind of these persistently degassing vents.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3