Observational study of the influences of thermal and dynamic boundary layer on the vertical distribution of black carbon aerosol in ShouXian county in wintertime, 2016

Author:

Cheng-gang Wang,Xia-lu Wei,Jia-de Yang,Ting Ni

Abstract

Using vertical observation data of black carbon aerosol and meteorological parameters in the ShouXian area of Anhui Province from 14 December 2016 to 3 January 2017, the thermal and dynamic effects of the boundary layer on the vertical distribution structure of black carbon were studied. The results show that 1) of 82 vertical sounding profiles obtained during the observation period, there were 72 boundary layer sounding profiles dominated by heat and 10 profiles dominated by dynamics. 2) When thermal effects were dominant, the concentration of black carbon aerosol was significantly affected by diurnal changes in the boundary layer. In the unstable boundary layer, black carbon aerosol was uniformly distributed in the vertical direction; during the transition from an unstable to a stable boundary layer, the concentrations of black carbon aerosol were significantly higher in the lower layer than in the upper layer; in the stable boundary layer, the concentrations of black carbon aerosol decreased continuously with height; and during the transition from a stable to an unstable boundary layer, the black carbon aerosol concentrations exhibited high values in the upper layer, with the concentration difference reaching 4 μg m−3. 3) When the dynamic effect was dominant, the structure of the vertical distribution of black carbon aerosol was affected by wind and by diurnal changes in the boundary layer simultaneously. The high winds (>4 m/s) removed the black carbon aerosol. In the unstable boundary layer, the black carbon aerosol uniformly distributed in the vertical direction had significantly lower concentrations in the high-wind range; when stable boundary layers occurred and during transitions from stable to unstable boundary layers, the black carbon aerosol concentrations were higher in the lower layer and lower in the upper layer. The stratification was more obvious than that observed under thermal control.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3