Genesis of High-Mg Adakites in the Southeastern Margin of North China Craton: Geochemical and U-Pb Geochronological Perspectives

Author:

Zheng Shuo,An Yanfei,Lai Chunkit,Wang Hongzhi,Li Yunfeng

Abstract

In the eastern North China Craton (NCC), Mesozoic tectonics was dominated by the Paleo-Pacific subduction rollback and the Tanlu crustal-scale fault movement. The regional transtension had generated extensive adakitic magmatism, some Cu-Au ore-forming but others not. To establish the geodynamic setting and any metallogenic link for the adakites from the southeastern NCC margin, we analyzed the ore-barren adakitic rocks from underground mines in the Huaibei-Linhuan coalfield (where surface igneous outcrops are scarce), and compared their ages and geochemistry with other mineralized and ore-barren adakites across Eastern China. Zircon U-Pb dating reveals two magmatic episodes in the Huaibei-Linhuan coalfield: 1) early-Early Cretaceous (ca. 130–129 Ma) (quartz-)diorite and granodiorite, and 2) late-Early Cretaceous (ca. 115.8 and 105.8 Ma) microgabbro and dolerite. Whole-rock geochemistry indicates that the (quartz-)diorite and granodiorite are high-Mg adakitic, featured by low K2O/Na2O (avg. 0.33), high Sr/La (avg. 44.3), and lack of correlation between SiO2 (fractionation index) and Sr/Y (avg. 56.55) and MREE/HREE (avg. 1.09), resembling typical adakites derived from oceanic-slab partial melting. Geochronological correlation with the regional tectonic events suggests that the slab-melting may have been caused by the Paleo-Pacific subduction rollback. Further extension and crustal thinning in the late-Early Cretaceous along the southern Tanlu fault may have formed the gabbro-dolerite in the coalfield. Geochemical comparison suggests that parental magma of the Huaibei-Linhuan adakites may have had similar water content [similar zircon 10,000*(Eu/Eu*)/Y and Eu/Eu* ratios] to typical porphyry Cu-Au ore-forming magmas, yet the former may have been considerably more reduced (lower zircon Ce/Nd and whole-rock V/Sc ratios). We considered that the assimilation of Carboniferous-Permian coal seams in the area may have further lowered the magma fO2 and thus its potential to form Cu-Au mineralization.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3