Characterization of thermal infrared medium- and short-term anomaly information from block to fault in mainland China

Author:

Zhang Jingye,Sun Ke,Du Chen,Zhu Junqing

Abstract

The relationship between satellite thermal infrared anomalies and earthquakes or fault activity has been studied for more than 30 years. In this study, five strong earthquakes (the MS6.1 earthquake in Biru, Tibet; the MS7.4 earthquake in Madoi, Qinghai; the MS6.0 earthquake in Delingha, Qinghai; the MS6.1 earthquake in Lushan, Sichuan; and the MS6.8 earthquake in Luding, Sichuan) that occurred on the western mainland of China over the past 2 years were studied. Based on monthly MODIS land surface temperature (LST) data and daily NOAA satellite longwave radiation data, the departure algorithm and the Robust Satellite Techniques (RST) algorithm were used to extract and analyze the characteristics of thermal infrared anomaly information for blocks and faults around the earthquake from different temporal and spatial scales. The results showed the following: 1) In the medium-term scale study based on monthly data, blocks near the epicenters of five earthquakes showed temperature increase anomalies of 1–6 months before the earthquakes; the areas of temperature increase anomalies were clearly controlled by the spatial distribution of the blocks, and earthquakes mostly occurred within blocks with frequent temperature increase anomalies. 2) In the short-term, thermal infrared anomaly feature tracking based on daily data meant that obvious thermal anomalies were also found. The thermal anomalies before the five seismic events all appeared within a period of 3 months before the earthquake, and there were multiple consecutive days of anomalies. The significant temperature increases generally occurred a month before the earthquake, and the distribution of the anomalies was mostly in the form of strips, which is basically consistent with the trend of the fault zone. The use of thermal infrared remote sensing data to summarize the dynamic evolution of thermal infrared anomalies of blocks and faults before strong earthquakes can provide a basis for the long-term monitoring of fault activity and seismic monitoring by satellite thermal infrared technology.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3