Seasonal Variation in Chemical Composition of Total Suspended Particles During the COVID-19 Pandemic in the Source Area of Urumqi River, Tianshan, China

Author:

Zheng Cunying,Li Zhongqin,Zhang Xin,Jiang Huimin,Zhou Xi

Abstract

The research of atmospheric aerosol in mountain glacier areas has attracted more and more people’s attention. For the first time, a field observation study of total suspended particles (TSPs) for four seasons from September 2019 to August 2020 was carried out at the Tianshan Glaciological Station in the source area of Urumqi River, East Tianshan Mountains, China. The TSPs presented typical seasonal characteristics of high in autumn and low in winter, with the annual average value of 181 ± 170 μg m−3. Concentrations of Ca2+, SO42−, NO3, Cl, NH4+ and K+, OC, EC were elevated in autumn. The influence of stationary source emissions was stronger than mobile sources, which was explained by the average ratio of NO3/SO42− (0.31 ± 0.17). The concentration of secondary organic carbon (SOC) was higher in summer and autumn, especially in summer, indicating that secondary formation processes of organic aerosols were frequent in summer. Impact of fossil fuel combustion sources were evident over the Glaciers, corroborated by the diagnostic mass ratios of OC/EC (0–21.4, 3.38) and K+/EC (0–0.31, 0.08). The factor analysis illustrated that aerosols were mainly affected by rock salt, dust, coal combustion, and automobile exhaust. The local sources made significant contributions to TSPs in the source of Urumqi River by the results of Results of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and potential source contribution function (PSCF).

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3