Mapping urban heatwaves and islands: the reverse effect of Salento’s “white cities”

Author:

De Razza Stefano,Zanetti Carlo,De Marchi Massimo,Pappalardo Salvatore Eugenio

Abstract

Extreme events related to climate change are increasing in intensity, frequency, and duration worldwide. Europe is identified as a heatwave hotspot, with trends three-to-four time faster than the northern mid-latitudes; effects of heatwaves are combined in urban contexts with the heat island phenomenon, making cities critical for climate risk prevention and management. Land surface temperature represents an essential parameter for assessing the intensity of thermal impact on urban ecosystems and on public health. This parameter is widely used to map and assess urban heat islands in light to support climate-resilient adaptation planning. The general aim of this study is to assess urban heat island intensity, during a significant heatwave, in a critical heat-related risk region in Southern Italy (Salento). Specific objectives are 1) assessing climate change trends for heat-related extremes (hot days and heatwaves), 2) calculating urban heat islands intensity at regional and urban scale, 3) assessing spatial relationships among thermal intensity and urban characteristics (soil sealing and surface albedo). Identification of heatwaves is based on climatological data and statistical analyses; spatial thermal analyses and correlations are based on Landsat-8 imagery while land cover data are derived from ortho-photos. Climate analyses show a notable increase of the maximum annual temperature of 0.5°C per decade, with an increase of eight hot days per decade. Spatial analyses on thermal impact highlight that urban heat island intensity is much lower within cities and towns than in rural areas, showing a “reverse effect” compared to the typical microclimatic characteristics of urban contexts. In fact, thermal intensity in the city of Lecce ranges from −11°C to 5.6°C. Also, by NDVI analyses, we found that permeable surfaces were 2°C higher than impermeable surfaces, with statistically significant differences. Results from albedo analysis suggest that the characteristics of building material in historical sectors of cities may play a crucial role in this “reverse effect” of urban heat islands. Further studies are required to better investigate the contribution of different factors in this context.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3