Mapping mining-induced ground fissures and their evolution using UAV photogrammetry

Author:

Fu Yaokun,Wu Yongzheng,Yin Xiwen,Zhang Yanjun

Abstract

Due to its unique geomorphological characteristics, the loess gully region is easy to produce ground fissures under the action of coal mining, destroy the ground infrastructures, induce geological disasters, and threaten the safety of people’s lives and property. Therefore, it is particularly important to accurately obtain information about the development of mining-induced ground fissures and study their spatial-temporal evolution mechanism. Based on the 1212 working face of a mining area in Yulin City, Shaanxi Province, this paper studies the extraction method and spatial-temporal evolution mechanism of ground fissures by combining remote sensing images and field survey data. The study shows that this proposed method significantly reduces noise points and mis-extraction, and the accuracy is more than 80%, improving the extraction accuracy of ground fissures and making the process more automated. By comparing the extraction accuracy of ground fissures at different flight altitudes, we determine that the optimal flight altitude for the research area is 60 m. At the beginning of the working face mining stage, the proportion of low-density areas of ground fissures continues to increase. Some low-density areas transition into high-density areas, which is consistent with the progress of the working face advancement. After the end of the working face retreat, the width of the ground fissures tends to be evenly distributed. The mining-induced ground fissures in the Loess gully and ravine region have good self-similarity. A dynamic development model of ground fissures is constructed to reveal its formation mechanism. The research conclusions can provide a technical support for geological disaster monitoring and land ecological restoration in mining areas.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3