A finite element numerical simulation analysis of mine direct current method’s advanced detection under varied field sources

Author:

Xie Haijun,Li Wanlu,Li Jin,Guo Yaofan,Yan Yu,Liu Ruiqing,Cheng Jinhao

Abstract

Ensuring the safety of coal mine production requires accurate forecasting of coal road heading faces in advance. Because of its high resistance to electromagnetic interference, the mine direct current (DC) method has been widely utilized in the advanced detection and prediction of coal mines. The layout of the field source significantly influences the detection outcomes obtained through this method. In this study, a variety of full-space three-dimensional geoelectric models were established based on the fundamental principle of DC resistivity, and the response features of geological anomalies located in various positions in front of a roadway were studied under different field source conditions using finite element numerical simulation. The electrical response characteristics were analyzed with the electrodes positioned in different directions and two-point to seven-point current sources located on the floor and side of the roadway, respectively. The electrical response of the geological anomalies was characterized with varying positions of the multi-point current source in the roadway and the pole distance of the power supply electrode. Furthermore, the electrical response characteristics of the mine DC method in advanced detection were compared for geological anomalies placed differently across the entire space. The results indicate that the response effect of the geological anomaly in front of the roadway is greater when the field source is placed on the shorter side of the roadway cross-section, with the number of field sources showing a positive correlation with the product of the pole distance and low-resistance amplitude. In advanced detection by DC method, the existence of geological anomalies on the side will affect the recognition of anomalies in front of the roadway.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3