Quantifying the mechanisms of rain-triggered seismicity in karstic regions

Author:

Perrochet Léa,Preisig Giona,Valley Benoît

Abstract

Seismicity following heavy rainfall events is often considered to be triggered by the pore pressure diffusion front migrating from the surface towards the focal depth, assuming a homogeneous crust. Although this assumption can be justified in some cases depending on local geology (e.g., a homogeneously fractured basement), it is too simplistic for known karst areas. Indeed, the hydraulic behaviour of karst during a flood event is not dominated by pressure diffusion but by highly transmissive karst conduits. This generates rapid and large variations in hydraulic head, possibly leading to large changes in pore pressure at seismogenic depth. We consider the conditions and data from three different case studies with karstic features to evaluate possible seismicity-triggering mechanisms. We identify four potential mechanisms to explain the influence of rainfall on fault stability: crustal loading and its associated poroelastic deformation, pore pressure diffusion, and direct hydraulic connection. We quantify the effect of these mechanisms for parametrisation corresponding to our case studies by considering the specific features of karst and using simplified analytical solutions. Results show that the pore pressure increase resulting from the crustal loading and poroelastic deformation is much smaller than the pore pressure increase resulting from a direct hydraulic connection and its diffusion towards depth over small distances. Moreover, the timing between the intense precipitations and the beginning of seismicity may indicate the mechanism behind the triggering process: no time lag to a time lag of a few hours supposes a direct hydraulic connection, whereas a time lag of a few hours to a few days suggests a coupled solution of a rapid pressure increase resulting from direct hydraulic connection followed by the diffusion process prograding towards the focal depth. Our results highlight the importance of considering the intrinsic properties of karst and its spatial distribution, especially its depth, when studying rain-triggered seismicity in a karstic environment.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3