Platinum-group elements (PGE) in the New Afton alkalic Cu-Au porphyry deposit, Canadian Cordillera, I: relationships between PGE, accessory metals and sulfur isotopes in pyrite

Author:

Boucher Brandon M.,Robb Samuel J.,Hanley Jacob J.,Kerr Mitchell J.,Mungall James E.

Abstract

The second part of this article can be found here: 10.3389/feart.2023.819109 (DOI). At the late Triassic New Afton alkalic porphyry Cu-Au deposit (British Columbia, Canada), pyrite is a widely distributed minor sulfide phase within hypogene ore where it predates Cu mineralization and hosts significant concentrations of Pd and Pt. Here we characterize pyrite major, minor and trace element composition by EPMA and LA-ICP-MS, and S isotopes (bulk pyrite and in situ SIMS in individual growth zones) to elucidate compositional variations at different stages of pyrite growth with respect to PGE deposition. At least two cycles of zoned Co-Ni-Pd-Pt-Se-As co-enrichment are recorded over two stages of pyrite growth at the New Afton deposit. Concentrations of Co (up to ∼5.5 wt%; highest observed in any reported ore-forming system) and Ni (up to 1 wt%) overlap with pyrite from mafic-ultramafic platinum-group element (PGE) deposits, iron oxide±apatite and iron oxide-copper-gold deposits (IOA-IOCG), and mantle peridotite-associated base metal exhalative deposits. In early hypogene (type I) pyrite, high Pt (up to ∼24 ppm) occurs in crystal cores that have high Co/Ni ratio (>∼7), high Co (>∼ 1 wt%) and are poor in Ni, Se, and As. With progressive growth, early hypogene pyrite rims and late hypogene (type II) cores record an initial Ni-Pd-As-Se (±Co) co-enrichment stage, followed by oscillations in composition (from “barren” to variably Co-Ni-Pd-Pt-As-Se-enriched). Pd in pyrite (up to ∼70 ppm) is inversely correlated to Co/Ni ratio, being enriched when Co/Ni < ∼7 and Ni > ∼1000 ppm. The highest levels of Pd enrichment occur in the most Ni- and Se-enriched growth zones. The transition from early, high Co/Ni (Pt-enriched) to later, low Co/Ni (Pd-enriched) growth zones is accompanied by a decrease in pyrite δ34SVCDT of up to ∼7‰ (4‰ range in single grains) with a total range in composition measured between −5.5‰ and +1.4‰. Subsequent to the shift to lower values, overgrowths of high Co/Ni pyrite formed with values of δ34SVCDT similar to the earliest Co-Pt-rich growth zones. Some combination of fluctuations in temperature and oxygen fugacity related to episodic cooling and hydrothermal recharge involving new pulses of metal-rich magmatic fluids is required to explain the observed metal enrichment patterns and variations in S isotope values. Co-Ni-rich pyrite may be a valuable exploration vector to PGE enrichment in porphyry deposits.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3