Pore heterogeneity analysis and control mechanisms in Cambrian shale of the Shuijingtuo Formation, Yichang area, China

Author:

An Zhengzhen,Zhao Yue,Zhang Yanfei

Abstract

This study focuses on understanding the fractal characteristics and controlling factors of micropore structures within organic-rich shale of the Cambrian Shuijingtuo Formation in the Yichang area of Hubei Province. Mineralogy, petrology, and organogeochemical characteristics were confirmed through comprehensive testing methods, including whole-rock X-ray diffraction and organic geochemical analyses. Additional experiments included low-temperature carbon dioxide adsorption, low-temperature nitrogen adsorption, and high-pressure mercury injection. Fractal dimensions of micropores, mesopores, and macropores were calculated using the V-S, FHH, and MENGER sponge models, respectively. Results indicate that the Cambrian Shuijingtuo Formation represents a typical deposit from an alkaline water body, resulting in high-calcareous shale. Fractal dimensions were as follows: micropores (D1) ranged from 2.1138 to 2.3475 (average 2.2342), mesopores (D2) ranged from 2.5327 to 2.7162 (average 2.6171), and macropores (D3) ranged from 2.7361 to 2.9316 (average 2.82905). Correlations were observed between total organic carbon (TOC) content and Ro with D1 and D2 (positive) and D3 (negative). Shale pore volume and specific surface area exhibited positive correlations with D1 and D2 but negative correlations with D3. High bio-deposited silica positively influenced micropore and mesopore development, while clay mineral compaction and dehydration transformations favored macropore development. Carbonate minerals primarily contributed to regular macropores, with complex correlations involving fractal dimensions D1, D2, and D3. The research results provide theoretical support for analyzing pore fractal characteristics of shallow old Marine shale reservoirs and the prediction and development plan of high-quality reservoirs of the Shuijingtuo Formation in the Yichang area.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3