Volatile trace metals deposited in ice as soluble volcanic aerosols during the 17.7.ka eruptions of Mt Takahe, West Antarctic Rift

Author:

Mason Emily,Edmonds Marie,McConnell Joseph R.

Abstract

Volatile metals are emitted at significant rates as gases and particulates from volcanoes, although their speciation, bioreactivity and longevity during atmospheric transport are essentially unknown. Ice cores provide detailed yet largely unexplored long-term records of volcanogenic volatile metals in air and precipitation. Here we evaluate the source and speciation of volatile metals (cadmium, lead, bismuth, and thallium) in Antarctic ice cores from the massive, halogen-rich and sulfur-poor ∼17.7 ka eruptions of Mt. Takahe, West Antarctic Rift. We show that these volatile, chalcophile metals were transported to the ice core as soluble aerosol, derived from magma degassing, in contrast to lithophile elements in the ice core that were transported as silicate ash. We use correlation analysis and chemical speciation modelling of the chlorine-rich volcanic plume to show that the volcanic metals cadmium, lead and bismuth were likely transported as water-soluble chloride aerosols in the atmosphere before they were scavenged from the plume by ice, water or ash and deposited onto the ice within 400 km of the vent. Our findings show that as well as recording trace metals sourced from much more distal regions, ice cores from Antarctica also record clear signatures of regional continental volcanism in the form of chloride aerosol.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3