Failure mechanism and stability analysis of an open-pit slope under excavation unloading conditions

Author:

Wang Jianming,Zhou Zihan,Chen Chong,Wang Huan,Chen Zhonghui

Abstract

Excavation unloading significantly contributes to rock slope failure in an open-pit mine. At present, there is no relevant theoretical study on the failure mechanism of the rock slope under excavation unloading. Therefore, in this study, based on the theory of fracture mechanics, the expression of the stress intensity factor at the crack tip on the rock mass at the vertical distance, h, from the slope top under excavation unloading is derived, the calculation method of the crack initiation angle is given, the expression of the ultimate safe height of the slope under unloading is obtained, and the ratio of the fracture toughness of the slope rock mass to the composite stress intensity factor at the crack tip on the rock mass is defined as the slope stability factor, which is verified by an engineering example. The results show that the crack initiation angle decreased when crack inclination was increased, and the crack initiation angle increased when the side-pressure coefficient, slope angle, and friction coefficient were increased. The ultimate safety height of the slope decreased first and then increased with the increase in the crack angle, and it was approximately linear with the crack length and inversely proportional with the slope angle. The stability coefficient calculated by this method is the same as that calculated by the limit equilibrium method and is small, which indicates the accuracy and rationality of this method. Results in this study can provide a theoretical basis for understanding and controlling the slope collapse disaster induced by excavation unloading.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Effects of the cooling treatment on the dynamic behavior of ordinary concrete exposed to high temperatures;Bi;Construction and Building Materials,2020

2. Crack coalescence behavior of rock-like specimens containing two circular embedded flaws;Bi;Lithosphere,2022

3. Effects of the loading and unloading conditions on crack propagation in high composite slope of deep open-pit mine;Chang;Advances in Civil Engineering,2019

4. True-triaxial test on unloading failure of jointed rock bridge;Chen;Chinese Journal of Rock Mechanics and Engineering,2010

5. Analysis of open-pit slope under excavation unloading;Chen,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3