Application of seismic attribute analysis techniques to multi-scale natural fractures description: a case study of the Longmaxi-Wufeng formation in H shale gas block, Yangtze plate, China

Author:

Xie Qinghui,Chen Junhao,Zhao Chunduan,Li Qingshan,Guan Shoujun,Wang Junqin

Abstract

The H shale gas block in the Yangtze plate of China has undergone multistage tectonic evolution, which has resulted in the development of faults and natural fractures that are multistage, multi-scale, multi-type, and multi-strike in nature. To precisely characterize the natural fractures, this study used the seismic attribute analysis method to conduct a multi-scale prediction and natural fracture modelling. Initially, manual fault interpretation and the conventional seismic attributes including variance attribute, curvature and edge detection are used to interpret large-to medium-scale faults. Subsequently, the ant-tracking attribute based on the divided-frequency seismic cubes is used to predict and quantitatively interpret the mid- and small-scale fractures; The third step is to quantitatively divide the ant-tracking attribute value into multiple scales and convert them linearly into fracture intensity. The fourth step is to establish a multi-scale fracture model. This approach has established a comprehensive prediction workflow, progressing from large-scale to small-scale analysis, and shifting from qualitative to quantitative assessment. Compared with traditional fracture prediction and modeling methods, this method not only enhances the accuracy, but also satisfies the engineering requirements of multi-scale modeling. By applying the method in the H shale gas block, we gained a microscopic understanding of the fractures, which are predominantly NW, NE, and nearly NS trending, with a minimal occurrence of nearly EW trending faults/fractures. This method can be effectively applied to characterize multi-scale fractures in areas similar to the geological background of the H shale gas block.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3