Regression analysis of air pollution and pediatric respiratory diseases based on interpretable machine learning

Author:

Ji Yan,Zhi Xiefei,Wu Ying,Zhang Yanqiu,Yang Yitong,Peng Ting,Ji Luying

Abstract

Air pollution is of high relevance to human health. In this study, multiple machine-learning (ML) models—linear regression, random forest (RF), AdaBoost, and neural networks (NNs)—were used to explore the potential impacts of air-pollutant concentrations on the incidence of pediatric respiratory diseases in Taizhou, China. A number of explainable artificial intelligence (XAI) methods were further applied to analyze the model outputs and quantify the feature importance. Our results demonstrate that there are significant seasonal variations both in the numbers of pediatric respiratory outpatients and the concentrations of air pollutants. The concentrations of NO2, CO, and particulate matter (PM10 and PM2.5), as well as the numbers of outpatients, reach their peak values in the winter. This indicates that air pollution is a major factor in pediatric respiratory diseases. The results of the regression models show that ML methods can capture the trends and turning points of clinic visits, and the non-linear models were superior to the linear ones. Among them, the RF model served as the best-performing model. The analysis on the RF model by XAI found that AQI, O3, PM10, and the current month are the most important predictors affecting the numbers of pediatric respiratory outpatients. This shows that the number of outpatients rises with an increasing AQI, especially with the increasing of particulate matter. Our study indicates that ML models with XAI methods are promising for revealing the underlying impacts of air pollution on the pediatric respiratory diseases, which further assists the health-related decision-making.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Self-driving cars: A survey;Badue;Expert Syst. Appl.,2021

2. Random forests;Breiman;Mach. Learn.,2001

3. On the use of generalized additive models in time-series studies of air pollution and health;Dominici;Am. J. Epidemiol.,2002

4. Forecasting air quality time series using deep learning;Freeman;J. Air Waste Manag. Assoc.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3