Seismic Anisotropy Within an Active Fluid Flow Structure: Scanner Pockmark, North Sea

Author:

Bayrakci G.,Callow B.,Bull J. M.,Minshull T. A.,Provenzano G.,North L. J.,Macdonald C.,Robinson A. H.,Henstock T.,Chapman M.

Abstract

Understanding sub-seabed fluid flow mechanisms is important for determining their significance for ocean chemistry and to define fluid pathways above sub-seafloor CO2 storage reservoirs. Many active seabed fluid flow structures are associated with seismic chimneys or pipes, but the processes linking structures at depth with the seabed are poorly understood. We use seismic anisotropy techniques applied to ocean bottom seismometer (OBS) data, together with seismic reflection profiles and core data, to determine the nature of fluid pathways in the top tens of meters of marine sediments beneath the Scanner pockmark in the North Sea. The Scanner pockmark is 22 m deep, 900 m × 450 m wide and is actively venting methane. It lies above a chimney imaged on seismic reflection data down to ∼1 km depth. We investigate azimuthal anisotropy within the Scanner pockmark and at a nearby reference site in relatively undisturbed sediments, using the PS converted (C-) waves from a GI gun source, recorded by the OBS network. Shear-wave splitting is observed on an OBS located within the pockmark, and on another OBS nearby, whereas no such splitting is observed on 23 other instruments, positioned both around the pockmark, and at an undisturbed reference site. The OBSs that show anisotropy have radial and transverse components imaging a shallow phase (55–65 ms TWT after the seabed) consistent with PS conversion at 4–5 m depth. Azimuth stacks of the transverse component show amplitude nulls at 70° and 160°N, marking the symmetry axes of anisotropy and indicating potential fracture orientations. Hydraulic connection with underlying, over pressured gas charged sediment has caused gas conduits to open, either perpendicular to the regional minimum horizontal stress at 150–160 N or aligned with a local stress gradient at 50–60 N. This study reports the first observation of very shallow anisotropy associated with active methane venting.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3