Roles of synoptic characteristics and microphysics processes on the heavy rain event over Beijing region during 29 July to 2 August 2023

Author:

Li Xiang,Zhao Shuwen,Wang Donghai

Abstract

The “23.7” event, an extreme rainstorm that affected North China from July 29 to 2 August 2023, was simulated using the Weather Research and Forecasting (WRF) model, version 4.2. We focus on dynamically diagnosing and analyzing the mass and latent heat budgets of rainwater during the extreme precipitation event on July 31 in the Beijing area, where the hourly rainfall reached an extraordinary 111.8 mm. Generally, the model effectively simulated the rainstorm, enabling further assessment of the extreme precipitation. Results indicated that under the combined influence of three major weather systems—the residual circulation of Typhoon Doksuri (a low-pressure system after typhoon landfall), the embryonic stage of Typhoon Khanun, and the North China high-pressure dam—a continuous influx of moisture and energy was transported to the North China region, promoting heavy precipitation. Application of vorticity equation diagnostics indicates that the horizontal transport term is the primary source term. Mass balance analysis reveals that the primary source of rainwater is the accretion of cloud droplets by rain, and the condensation of water vapor into cloud droplets is the main contributor to the latent heat.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3