The Compression Behavior of Undisturbed and Compacted Loess Under the Controlling of Total Suction and Injected Solutions

Author:

Zhang Tongwei,Hu Zhengjin,Lan Hengxing,Deng Yongfeng,Zhang Huyuan

Abstract

Thousands of square kilometers of habitable land have been created on the Loess Plateau in China. In arid and semi-arid area of Northwest China, the mechanical behavior of structural loess is sensitive to water intrusion and human engineering activities. Meanwhile, the higher water salinity in loess and seasonal variation of ambient humidity are common in this area. Due to different physical and mechanical properties of natural and compacted loess, the impacts of ambient humidity and saline water migration on their deformation are still unclear. This paper developed an oedometer test to investigate the compression behavior of natural and compacted loess under environmental humidity (represented by total suction Ψ) and injection water salinity (represented by osmotic suction Ψπ) changing. The results showed that the void ratio variation Δe of compacted loess (the dry density is 1.8 g/m3) under the impact of total suctions (from 14.01 to 146.23 MPa) and salinities of injected solution (0.17 mol/L NaCl, 0.29 mol/L Na2SO4 and distilled water) were under 0.01. The variation of void ratio for undisturbed loess increased about 8 times with 10 times decreasing of total suction, which was corresponding to the increase of relative humidity (RH). In the stage of solution injection, the deformation of undisturbed loess increased with the Ψ-Ψπ increasing, and the differences between different samples reached to nearly 20 times. The mechanism was that the salt inside undisturbed loess would deliquescence when the RH was higher than DRH (Deliquescence Relative Humidity), and the natural structure collapsed. The compression index Cc of samples generally decreased with Ψ-Ψπ, and the compressibility of undisturbed loess was higher. The swelling indices Cs of samples slightly decreased with Ψ-Ψπ, but the variation was not significant. The strain-stress relationships of loess can be well described by Duncan-Chang constitutive model. Interestingly, the difference of initial deformation modulus ΔEs of two loesses, which represented the structural compression under the coupling of total suction and osmotic suction, linearly related to the Ψ-Ψπ. The Δεmax between the structural loess and compacted loess exponential increased with Ψ-Ψπ. In the engineering practice, the humidity and saline water intrusion should be considered in the long-term behavior of loess in shallow layer.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3