Reconstruction of 3D multi-mineral shale digital rock from a 2D image based on multi-point statistics

Author:

Liu Lei,Yao Jun,Imani Gloire,Sun Hai,Zhang Lei,Yang Yongfei,Zhang Kai

Abstract

Introduction: Shale oil and gas reservoirs contain a variety of inorganic and organic pores that differ significantly from conventional reservoirs, making traditional experiments ineffective. Instead, the pore-scale imaging and modeling method, regarded as a novel and practical approach, is proposed to characterize shale microstructure and petrophysical properties. Therefore, it is of great significance to accurately reconstruct the three-dimensional (3D) microstructure of the porous medium, that is, the digital rock. However, microstructural images of shale at high-resolution, obtained through scanning electron microscopy (SEM) are constrained in the two-dimensional (2D) scale.Method: In this work, a novel iterative algorithm to reconstruct 3D multi-phase shale digital rock from a 2D image using multi-point statistics has been proposed. A multi-grid data template was used to capture the conditional probabilities and data events. The novelty of this work stems from an accurate representation of different types of pores and the mineral characteristics of shale rock from 2D images.Result: A series of simulations were conducted to reconstruct 2D shale digital rock from a 2D segmented training image, 3D shale digital rock from a 2D segmented training image, a 2D gray training image to reconstruct 2D shale digital rock, and a 2D gray training image to reconstruct 3D shale digital rock.Discussion: To corroborate the accuracy of the reconstructed digital rock and evaluate the reliability of the proposed algorithm, we compared the construction image with the training image with the two-point correlation function, geometry, morphological topology structure, and flow characteristics. The reconstruction accuracy indicates that the proposed algorithm can replicate the higher-order statistical information of the training image.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3