Large-scale structures in the Earth’s interior: Top-down hemispherical dynamics constrained by geochemical and geophysical approaches

Author:

Iwamori Hikaru,Yoshida Masaki,Nakamura Hitomi

Abstract

Geochemical and geophysical observations for large-scale structures in the Earth’s interior, particularly horizontal variations of long wavelengths such as degree-1 and degree-2 structures, are reviewed with special attention to the cause of hemispherical mantle structure. Seismic velocity, electrical conductivity, and basalt geochemistry are used for mapping the large-scale structures to discuss thermal and compositional heterogeneities and their relations to dynamics of the Earth’s interior. Seismic velocity structure is the major source of information on the Earth’s interior and provides the best spatial resolution, while electrical conductivity is sensitive to water/hydrogen contents. The composition of young basalts reflects the mantle composition, and the formation age of large-scale structures can be inferred based on the radiogenic isotopes. Thus, these different research disciplines and methods complement each other and can be combined to more concretely constrain the structures and their origins. This paper aims to integrate observations from these different approaches to obtain a better understanding of geodynamics. Together with numerical modeling results of convection in the mantle and the core, “top-down hemispherical dynamics” model of the crust-mantle-core system is examined. The results suggest that a top-down link between the supercontinents, mantle geochemical hemisphere, and inner core seismic velocity hemisphere played an essential role in formation of the large-scale structures and dynamics of the Earth’s interior.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3