Two kinematic transformations of the Pamir salient since the Mid-Cenozoic: Constraints from multi-timescale deformation analysis

Author:

Ge Jin,Shi Xuhua,Chen Hanlin,Lin Xiubin,Ge Weipeng,Wei Xiaochun,Li Feng,Chen Jie,Li Haibing,Cheng Xiaogan,Zhang Fengqi

Abstract

The Pamir salient is a key part of the Himalayan–Tibetan Plateau orogenic system and has undergone intense tectonic deformation during the India–Asian collision. Delineating the Cenozoic kinematics and geodynamics of the Pamir salient requires a comprehensive understanding of the active arcuate structures along its frontal margin, from the perspective of the multi-spatiotemporal evolution of deformation patterns. Here, we reviewed the deformation rates of the major structures at different timescales, reanalyzed the published Global Positioning System velocities, and examined the present-day seismicity to constrain the kinematics of the Pamir salient since the Late Cenozoic. Integrated with the crustal evolution history during the Middle–Late Cenozoic and the deep structure, we proposed a new model to explain the multi-stage kinematics and associated geodynamics of the Pamir salient. During ∼37–24 Ma, the initial Pamir salient moved northward via radial thrusting that rotated the basins on both sides, which was driven by the continuous compression of the Indian slab after the breakoff of its oceanic part. During ∼23–12 Ma, the gravitational collapse of the Central and South Pamir crusts, which was induced by the breakoff of the continental part of the Indian slab, triggered the extension within the Pamir and foreland-ward movement of the upper crust. The upper crustal materials moved in varying directions due to the differential strength of the foreland areas, transforming the crustal kinematics from radial thrusting into a combination of radial thrusting and transfer faulting. Since the coupling of the Indian and Pamir slabs at ∼12–11 Ma, the deformation propagation towards the forelands accelerated, after which the kinematics of the Pamir salient exhibited asymmetric radial thrusting that has been sustained until the present. The asymmetric radial thrusting was likely driven by the compressive stress effect of the lithospheric basal shear generated by the underthrusting of the cratonic Indian lithosphere, which further led to the rollback of the Pamir slab and the consequent migratory extension in the South Pamir.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Fundamental Research Funds for the Central Universities

Qianjiang Talents Fund of Zhejiang Province

Zhejiang University

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3