Mechanism and Controlling Factors on Methane Yields Catalytically Generated From Low-Mature Source Rocks at Low Temperatures (60–140°C) in Laboratory and Sedimentary Basins

Author:

Wei Lin,Yin Jia,Li Jiansheng,Zhang Kun,Li Chunzhen,Cheng Xiong

Abstract

Various studies have shown that geo-catalytically mediated methanogenesis could happen in immature to early-mature source rocks at temperatures ranging from 60 to 140°C based on a series of long-term laboratory heating experimental evidences. The results of those studies show that methane yields at the given temperature are 5–11 orders of magnitude higher than the theoretically predicted yields from early thermogenic methane generation kinetic models. However, different types of source rocks in these laboratory simulation experiments generated varied CH4 and CO2 yields, which suggest that controls on CH4 generation during catalytic methanogenesis are complex. This study summarizes and compares gas yield results from laboratory low-temperature heating simulation experiments. Pre-existing trapped methane in rock chips could mimic newly generated gas during heating. The yields of catalytically generated CH4 from individual source rocks were re-quantified by subtracting the amounts of pre-existing CH4 in the closed pores of the original source rocks from the total methane amounts released from heating experiments and pre-existing CH4 in the closed pores in heated source rocks. The results show that heating temperature and time exert a positive influence on methane catalytic methanogenesis. Mowry and Second White Specks Formation Shale generated approximately ten times more CH4 than New Albany Shale and Mahogany Shale per gram of total organic carbon (TOC). Samples of Springfield Coal #1 and #2 exhibited ten times yield difference from one another at the same heating temperature. Those yield differences are not strongly associated with TOC content, heating time, temperature, metal content, or kerogen type but appear to be more influenced by maceral composition and also maceral–mineral contact area within the source rocks. We conclude that macerals in the liptinite group have a propensity for methanogenesis. Specifically, amorphous organic matter undergoes transformation into hydrocarbons earlier than alginite at low-temperature heating conditions. Sporinite also contributes to higher yields of methane released from the coal source rock. Vitrinite and inertinite show a positive influence on carbon dioxide but no significant effect on increasing methane yields compared to other macerals. The strongest catalytic methanogenesis in the studied sample produced methane yields at 60°C, which amounted to ∼2.5 μmol per gram of organic carbon during one year of heating. We suggest that geocatalytic methanogenesis could generate economically sizeable gas plays from immature to early-mature source rocks over geologic time.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3