Author:
Giresse Pierre,Bayon Germain,Tallobre Cedric,Loncke Lies
Abstract
Contourite sediment accumulations at continental margins are related to strong bottom water circulation, where intense winnowing can result in neoformation of authigenic grains of glauconite at the seafloor. In this study, we investigated whether such glauconite grains could faithfully record ambient bottom-water neodymium (Nd) isotopic compositions, and hence be used as paleoceanographic archives. To this purpose, we measured Nd isotopic compositions (εNd) in a series of glauconitic grains, foraminiferal assemblages, leached Fe-Mn oxyhydroxide phases, and detrital clays separated from a contourite sediment record at the Demerara slope off French Guiana (IG-KSF-11; 2370 m water depth), at a location where the present-day εNd distribution along the water column is well characterised. We show that the εNd composition of core-top glauconite grains (−12.0 ± 0.5) agrees with the expected NADW-like seawater signature at the same location and water depth (−11.6 ± 0.3), while departing from measured εNd values for corresponding detrital clays (−11.3 ± 0.2), foraminiferal (−10.9 ± 0.2), and Fe-Mn oxyhydroxide fractions (−9.2 ± 0.2). This finding indicates that glauconitic grains at this particular location are probably best suited for paleoceanographic reconstructions than foraminifera and leached Fe-oxyhydroxide fractions, which appear to be influenced by sediment redistribution and the presence of terrestrial continental Fe-oxides, respectively. Using rare earth elements (REE), we tentatively propose that the acquisition of seawater Nd isotopic signatures by glauconite is controlled by the presence of authigenic REE-bearing phosphate-rich phases intertwined within clay mineral sheets, while confirming previous findings that the process of glauconitisation results in the progressive loss of REE within glauconitic grains. Preliminary paleoceanographic implications suggest strengthened bottom-water circulation of the glacial analogue of NADW at this particular location and water depth, with a εNd signature (between −10.8 and −11.5) similar to that of modern NADW.
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. A review on palaeogeographic implications and temporal variation in glaucony composition.;Banerjee;J. Palaeogeogr.,2016
2. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation.;Barrat;Geostand. Newslett.,1996
3. Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes.;Barrat;Geochim. Cosmochim. Acta,2012
4. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect.;Bau;Contrib. Min. Petrol.,1996
5. Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm addition and alkaline fusion.;Bayon;Geostand. Geoanal. Res.,2009
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献